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ABSTRACT

Students learn when they connect new information to existing understanding or when they modify 

existing understanding to accept new information. Most current teaching methods  focus on trying 

to get students to solve problems in a manner identical to that of an expert. This study investigates 

the effectiveness of assessing student understanding related to context specific problem solving 

decisions, prescribing feedback based on the assessment, and improving  student understanding to 

the point where they can make correct decisions. Students were given a  refrigeration problem unlike 

their prior problems and were asked to draw the cycle on a T-v diagram using a tutor system. Every 

group tested (a total of 373 students) showed a significant improvement in their  understanding 

(p<0.0001, Cohen’s d>0.8) using a single 40 minute tutor activity.
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INTRODUCTION

It is well established that thermodynamics is a major challenge for undergraduate engineering 

students in terms of their ability to understand and properly use the concepts and principles at a 

level that is necessary to solve engineering problems (Miller, 2006; Streveler et al., 2008, Prevost 

et al., 2012). In addition, students develop misconceptions about thermodynamics that lead them 

to incorrect solutions. Chi (2008) and Reiner, et al. (2000) address the question of why some mis-

conceptions are particularly prevalent and difficult to correct. Their results suggest that particularly 

problematic misconceptions may be based on metaphors to physical phenomena that are similar 

but not quite right, e.g. thinking of electrical current as a fluid. Or, difficult misconceptions are based 

on phenomena with unobservable components or relationships. 

One approach to improving student understanding of thermodynamics was to create more inter-

active instructional materials using computer-based instruction to supplement traditional textbooks 

(Anderson et al., 2005; Taraban, 2003). Interactions included answering multiple choice and short 

answer questions as well as controlling simulations of device and system behaviors. However, their 

results did not indicate significant improvement in student understanding.

Researchers have attempted to define and test student understanding of the set of concepts 

needed to solve problems in thermal-fluids courses (Streveler 2003; Prince 2012). Turns & Van Meter 

(2011) argued that how students structure their declarative knowledge is strongly linked to their 

problem framing ability. They recommended explicit explanations of the essential concepts and 

the problem solving process along with mechanisms for engaging students in problem solving. To 

identify students’ misconceptions about thermodynamics, Beall (1994) posed conceptual questions 

to the students and asked them to write a response. This assessment of student understanding was 

used to clear up misconceptions in subsequent lectures. 

Building on this work, Prevost et al. (2012) scaled the approach to large classes using automated 

text analysis to provide instructors with an analysis of students’ constructed responses. The goal 

was to automatically generate a report for instructors so that they could address any problems 

by the next class meeting by providing feedback to students or modifying instructional materials.

Although there is wide variation in student understanding, typical instruction targets the aver-

age student because of limited resources. An intelligent tutoring system (ITS) is one approach to 

providing personalized learning that is easily scalable to many students and is available 24/7.

An ITS contains multiple interdependent components: the domain model, the student model, the 

expert model, the tutor model, the user interface, and any training media (Beck, Stern & Haugsjaa, 

1996; Sottilare & Proctor, 2012). The domain model is critical to the effectiveness of the tutor because 

it contains information (e.g., facts, concepts, principles) for a specific knowledge domain. The student 
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model contains information on each student’s status in terms of understanding at different points 

in time. The tutor model reconciles the domain model with the student model to determine what 

learning activities are most appropriate for a student. The expert model represents the solution to 

a problem and is used by the tutor to make comparisons with the students’ solutions. The interface 

includes the screens and user dialogs that students use to interact with the tutor.

The remainder of this paper is organized as follows. In the next section, we describe previous work on 

student learning that provides insights on how an ITS could facilitate student learning. This is followed 

by a description of the basis of the ITS domain model - decision based learning. We then describe how 

the domain model was implemented. Then in the next section, we describe the methodology used in this 

study to determine its effectiveness. Finally, results of the study are presented followed by our conclusions.

Related LIterature on Learning

Haile (1997-1998) identified two fundamental components of learning, namely, that learning 

involves developing useful neural firing patterns in the brain (Freeman 1994, Searle 1992) and that 

learning can only begin from things a student already knows. Given that learning involves develop-

ing beneficial patterns, students must learn cues that re-create useful patterns so that they can use 

the patterns to solve problems. Intelligent thinking involves the identification of alternate patterns 

and choosing from them. This cannot be done quickly. Correcting misunderstandings from earlier 

learning requires not only the development of a new pattern, but the suppression of the formation 

of the old erroneous pattern. The domain and tutor models in an ITS need to be consistent with the 

nature of learning (i.e., creating useful patterns and suppressing erroneous patterns). 

Haile (1997, 1998) proposed that technical understanding should be organized into the hierarchy 

shown in Table 1. Alternative structures have also been proposed to develop student understanding 

(Fuller et al., 2007) such as Bloom’s taxonomy, Niemierko’s ABC taxonomy, Tollingerova’s taxonomy, 

and Bespalko learning objectives. While there are variations in the content of these structures, they 

Table 1. Haile’s Hierarchy of Understanding.

Level Name Description

1 Making Conversation Properly use names of objects and concepts, even if they are not correctly understood

2 Identifying Elements The typical or common use of the object as well as situations where the object is not useful/fails.

3 Recognizing Patterns Relations that impart meaning to a set of objects, concepts, and processes

4 Solving Problems Getting successful answers

5 Posing Problems Learning the procedure of problem solving through repetition 

6 Making Connections Generalizing pattern, problem context, and solution to other domains

7 Creating Extensions Modifying generalizations to attack other problems
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tend to be hierarchical in nature. Haile (2000) also showed that his proposed hierarchy fits into the 

more general hierarchies developed by Donald (1991) and Egan (1997).

DOMAIN MODEL

The fundamental structure of our domain model for the ITS is a hierarchical set of decisions that 

students need to make as they solve a problem. This set of decisions is consistent with Haile’s hier-

archy (1998). For example, for a thermodynamic cycle, students need to decide how many different 

pressures exist in the system. A student who cannot make the correct decision lacks fundamental 

understanding in the domain. By evaluating a student’s solution using the decision set, the tutor 

can make an assessment of student’s understanding. The evaluation process proceeds sequentially 

through the decision set and makes a determination of the level of understanding for each deci-

sion. The decision set is designed by the instructor so that decisions proceed from general domain 

decisions to problem specific decisions (i.e., students must understand fundamental principles as 

well as the elements of the problem). 

The ITS is designed to help students solve problems without full expertise and to improve their 

conceptual understanding and expertise through the decision making/feedback loop. Students 

decisions give the tutor specific knowledge about the students (i.e., the student model) so that 

the tutor can provide individualized feedback in the form of additional questions or activities. The 

feedback was designed to develop a student’s understanding to the point where they can make the 

correct decision, based solely on the student’s thought process. 

Lacking expertise, students will make errors in their decisions. Some of these errors are related to 

student misconceptions. Misconceptions are addressed by introducing problems where the student’s 

thought processes does not work, and by using existing student understanding to eliminate the 

misconception. After successfully completing a problem, the student should have better understand-

ing, although they are still not an expert. Students gain expertise by refining their understanding as 

they practice making these same decisions for a variety of problems.

Domain Model for T-v Phase Diagrams

To illustrate the implementation of the domain model, we use the context of drawing a T-v phase 

diagram in a thermodynamics course. We designed a general set of decisions that could be used 

for any thermodynamic cycle. 

1. Is a vapor dome needed? (Are there phase changes in the cycle?)

2. How many pressures are in the cycle?
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3. How is a pressure line drawn on a T-v diagram?

4. How should phase change P and T be labeled on the diagram?

5. What are the P, T, v relations for each component in the cycle?

6. In which phase region should each state be located?

In this study, we focused on the question – does this domain model increase student understanding 

of component relations?

METHODOLOGY

An online problem solving activity was implemented using an intelligent tutoring system to collect 

student T-v drawing data for a previously unseen refrigeration cycle problem. The tutor was initially 

used for statics problems and is described in Amin-Naseri (2013). A total of 373 students participated 

in the tutor activity. While student demographics were not collected for this study, the majority of 

the students in the thermodynamics courses are sophomores and juniors. Approximately 55% of 

the students are usually from mechanical engineering with the remainder coming from aerospace 

(22%), industrial engineering (14%), and other disciplines. Almost 100% of the students in Thermo 

2 are in mechanical engineering. The activity was assigned as a homework problem in the courses.

This study included 7 sections of thermodynamics (six Thermo 1 sections and one Thermo 2 sec-

tion) from 4 different instructors. Thermo 1 covers the zeroth, first and second laws of thermodynam-

ics, properties and processes for ideal gases and solid-liquid-vapor phases of pure substances, and 

applications to vapor power cycles. In Thermo 2, students learn about gas power cycles, fundamentals 

of gas mixtures, psychrometry, and thermochemistry. Students apply concepts in these topics to 

one-dimensional compressible flow, refrigeration, air conditioning and combustion processes. The 

data collection consisted of a pre-test, 40 minutes working on the tutor, followed immediately by a 

survey and post-test. In some cases, students did not solve the entire problem within 40 minutes. 

Activity Description

In Figure 1, the problem statement is on the left including a system drawing showing how all the 

components are connected for this previously unseen type of refrigeration cycle, along with problem 

specific information. On the right, is the drawing area for the T-v diagram (a phase diagram with 

temperature on the y axis and specific volume on the x axis) and a set of drawing tools for select-

ing objects, drawing and labeling points and line segments, and drawing a vapor dome. The vapor 

dome separates pure liquid, liquid-gas, and pure gas states. Students use the “Submit Drawing” 

button to receive feedback on their most recent drawing.
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Feedback from the tutor model for phase change labeling was improved throughout the study 

based on the student responses to the feedback. The general tutor process involving a student can 

be described by the decision tree in Figure 2. A student begins the process by drawing an initial T-v 

diagram and submitting it for evaluation. Figure 3 shows an example of an incorrect initial submis-

sion. Based on the decision tree, the student answers the pressure question in Figure 4. If the answer 

is incorrect, the student answers component pressure questions for each component in the system. 

Figure 5 shows the question for a compressor. If a component answer is incorrect, the student is 

redirected to an instructional video about the behavior of the component. 

After successfully answering all the questions, the student can revise the T-v diagram and re-

submit for tutor evaluation. If the diagram does not have all the states in the system (e.g., Figure 6) 

the tutor provides feedback that all states need to be included. When all states are present, the 

tutor will check the P, v, and T relations for each component based on the location of the states. 

For example, in Figure 7 the state relations for the compressor are incorrect because the specific 

volume should decrease from 3 to 4.

The student answers three questions about the P, T, and v relations in the component. If any of 

the answers is incorrect, the student is redirected to an instructional video about the component. 

When all three answers are correct, the student revises the diagram and re-submits. Finally, when 

all the component relations are correct, the student has successfully completed the problem.

Figure 1. The activity for (P, T, v) relations.
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After correctly completing the drawing activity, the student is immediately sent to a post-test 

that asked the same component property relations questions as the pre-test (see Appendix A). Two 

multiple choice questions were worded incorrectly on the initial set of students, and these two ques-

tions were thrown out, resulting in pre/post test scores out of 16 questions for the first set of students. 

RESULTS

A paired t-test on the test scores was performed for each group of students to evaluate the 

 effectiveness of the tutor. Two of the pre/post test questions were incorrectly worded in the initial 

Thermo 1 data set, resulting in maximum pre/post test scores of 16 points. Removing these two 

answers did not significantly alter the results for this initial group. As shown in Table 2, every group 

Figure 2. General tutor process.
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Figure 3. Initial student T-v submission. 

  

Figure 4. Pressure question.
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Figure 5. Component pressure question.

Figure 6. Drawing after pressure activity.  Figure 7. Compressor component failure.
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of students tested had a large improvement in understanding, regardless of instructor or class size. 

The difference between the post-test and pre-test scores was significant (with p< 0.0001) for all 

groups. The t-test results indicate that students were better able to answer P, T, v questions im-

mediately after working on the activity. The effect size was calculated using Cohen’s d (0.2 = small, 

0.5 = medium, 0.8 = large) (Cohen 1988). The level of improvement (d>0.8) indicates a large (short-

term) improvement in student understanding of P, T, v relations for the components in the refrigera-

tion problem. All of this improvement was the result of a single 40 minute activity in which students 

made decisions and received individualized assistance from the tutor. 

The Thermo 2 group was tested for retention 4 weeks after the tutor activity, with no additional 

coverage of refrigeration cycles. Even after 4 weeks, Thermo 2 students knew a medium amount 

more (0.6 < d < 0.8) about cycle components than they did at the completion of course coverage 

of refrigeration cycles, solely due to a single 40 minute tutor activity. 

Four separate instructors were used for the Thermo 1 test groups. Therefore, the results were not 

pooled across all groups because of possible instructor differences. The average initial understanding 

of each component relationship varied by instructor from 28 to 62%, while the number of compo-

nents correctly understood (all 3 correct property relationships) varied from 0 to 25%, depending on 

the instructor and the semester. Figure 8 takes a closer look at how initial understanding is related 

to the amount of learning from using the tutor for a single activity. The Y axis is the increase in the 

Table 2. Tutor Results All Users.

Course
# of 

students

Pre test Post test Retention Cohen’s d 
(Effect size)**Mean SD Mean SD Mean SD

Summer 2013 
Thermo 1*

88 9.72 2.73 14.09 2.16 N/A N/A 1.77

Summer 2013 
Thermo 2

42 12.28 3.03 15.85 2.11 14.33 2.57
Pre-post: 1.36
Retention: 0.73

Fall 2013
Thermo 1

53 7.62 2.60 10.79 3.36 N/A N/A 1.05

Fall 2013
Thermo 1

50 8.60 2.42 11.36 3.35 N/A N/A 0.95

Spring 2014
Thermo 1

12 8.92 2.31 12.83 2.95 N/A N/A 1.48

Spring 2014
Thermo 1

98 8.70 2.99 11.39 3.15 N/A N/A 0.87

Summer 2014
Thermo 1

30 10.87 3.06 13.67 2.45 N/A N/A 1.01

*  Summer 2013 – Thermo 1 students’ score is out of 16 possible points due to poorly 
worded pre/post questions. The rest of the scores are out of 18 possible points.

**  An effect size of 0.8 or greater is considered a large effect. Between 0.5 and 0.8 is 
considered medium.
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students’ scores from the pre-test to the post-test. Students learned approximately  1/2  of what they 

didn’t know about component relations, regardless of their level of initial understanding. Students 

who needed the most help benefitted the most from the activity.

Table 3 shows the variation in pre-test scores. The amount of improvement is inversely proportional 

to the pre-test score. The relatively low number of low (and high) scores seems to indicate that most 

students gave an honest attempt at the pre/post test questions. Random guessing would give an 

average pre-test score of 3.6. Removing students below some threshold (say removing those with 

a pre-test score of 5 or less) does not significantly alter any of the reported results. 

Figure 8. Learning vs Initial Understanding.

Table 3. Pre Test Distribution.

Pre
Test

Number
of Students

Average
Improvement

Pre
Test

Number
of Students

Average
Improvement

0  2 11.5 10 30 3.6

2  1 12.0 11 49 2.4

3  7 6.3 12 29 1.7

4  7 5.6 13 23 1.1

5 11 6.5 14 12 2.0

6 38 4.7 15 15 0.7

7 41 4.0 16  5 1.2

8 48 3.9 17  3 0.3

9 51 3.4 18  1 0.0
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Instructor Effects

Data shows that students having the same instructor for Thermo 1 and 2 had higher pre-test scores 

(t value: 2.07, p = .049), but interestingly there is no statistically significant difference in post test 

score (t value = 1.007, p= 0.324) based on Thermo 1 instructor. These results indicate that students 

benefit regardless of the instructor.

Survey Results

An ANOVA was conducted on first time users to study the effects of self-assessment on student 

performance. The ANOVA results (F
3,25

) = 0.577, p = 0.636) indicate that the level of improvement due 

to tutor use is independent of the student self-assessment. Improvement appears to be  independent 

of background, self-efficacy, initial pre-test score, or prior instruction for these students.

Component Results

To see why the tutor is working, a more in depth analysis was performed for the 88 students in the 

summer 2013 Thermo 1 course. While this initial group of students had some of the best results, the areas 

of difficulty are typical of all 373 students evaluated. Most of the 88 students needed help at various 

points in this activity. Fifteen students hit the submit button without a vapor dome on initial submission 

(16%). After drawing a vapor dome, 26 students submitted a drawing without 3 pressures lines (29%). 

After receiving enough help, if any, to get a vapor dome, 3 correctly drawn pressure lines, and 9 labeled 

states, 67% of the components were initially drawn correctly by the students. The initial component draw-

ing results do not perfectly measure initial drawing success because some students had already received 

assistance regarding the correct property relations through completion of the pressure activity. With the 

assistance of the tutor, 89% of students (78/88) were able to complete the entire drawing activity, and 

92% of the components were correctly drawn. Completion of the activity requires all components and 

states to be correctly drawn. Student performance for components is summarized in Table 4. 

An important goal of the decision set is to find and remove misconceptions. A common student 

misconception about pressure is that heating or cooling an open system at steady state will raise or 

lower the pressure. When 88 students were asked about a heat exchanger, pre-test results showed 

that only 38% of students had correct initial understanding while 53% of the students had a miscon-

ception. At the end of the activity, the post-test showed that 80% of the students had the correct 

understanding of pressure while 16% of the students still had this misconception.

Comparing the pre-test scores with the first drawing submissions, there does not appear to be 

a good correlation between initial drawing success and initial component understanding. Students 

may have trouble with their initial drawing because they do not understand a component, or they 

may have understanding but simply have trouble connecting what they know to drawing a diagram. 
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The reverse is also true: students may have a correct drawing because they understand component 

behavior or they may memorize what a particular component looks like on a diagram. 

Specific volume was the least understood property (49% correct), followed by pressure (56% cor-

rect) and then temperature (78% correct). Not surprisingly, students had trouble with temperature, 

pressure, and specific volume for the components they had not seen before (mixing chamber and 

gas-liquid separator). What might be surprising is the degree of misunderstanding in components 

that had been used repeatedly to solve thermo problems (i.e., compressor, condenser, evaporator, 

and expansion valve). Students initially had all three P, T, v relations correct for only 25% of the 

previously seen components. 

Overall understanding of all three properties was much better after the tutor activity, increas-

ing from 61% to 88% (9.74/16 to 14.09/16). The pre-test was taken immediately before the drawing 

activity and the post-test was taken immediately after completing the drawing activity. Therefore, 

the changes in student performance can be attributed solely to the tutor activity. 

Some important points about the tutor include the following:

1. Pre-test results were not linked to the help students received on the activity.

2. Help with P, T, v relationships occurred only when the drawing was incorrect.

3. Students were never directly told what the drawing should look like.

4. Students had never seen this specific cycle prior to the activity.

Not all student misunderstandings (identified by the pre-test) were necessarily addressed by the 

activity. Student misunderstanding was only addressed when it was helpful in completing the cur-

rent problem (drawing a correct diagram). The idea is to have all help be relevant to a task, rather 

than trying to correct everything that is wrong. 

For the initial two groups of students (summer 2013), phase change labeling was allowed but was 

not evaluated. The initial two groups of students have the biggest improvement because nearly all 

Table 4. Component performance.

Comparison
Knowledge Drawing

Pre-test Post-test First submission Last submission

Compressor 82% 96% 64% 92%

Mixing chamber 49% 88% 50% 91%

Separator 32% 93% 74% 91%

Condenser 57% 82% 76% 94%

Expansion valve 68% 90% 48% 91%

Evaporator 58% 83% 89% 93%

Average of all components 61% 88% 67% 92%
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of the students got through the component checks. On later versions of the tutor, students were 

required to correctly label phase change temperatures and pressures before component relations 

were addressed. Some students got stuck in how to correctly label a diagram, and quit before they 

received the component help portion of the activity. Other students spent enough time to get 

proper labelling that they lost interest and quit when they reached the component portion of the 

activity. It is clear from our experience that an ITS needs to rapidly provide students with the help 

that they need or students will not use it. An ITS requiring extensive student (or instructor) training 

is likely doomed to failure. 

CONCLUSIONS AND FUTURE WORK

“Good teaching meets students at their current level of understanding and attempts to push 

them to higher levels … One of an instructor’s goals is to find the level of understanding at which 

students are balanced between perplexity and confidence; at the point of creative tension, teach-

ing is most effective and learning is most rapid. The goal is relatively easy to achieve for a single 

student (graduate student), but exceeding difficult to achieve for a group of heterogeneous talents 

and personalities (undergraduate class).” Haile (2000)

The ITS using a domain model based on a hierarchical decision set was designed to address the 

goal described by Haile. A domain model based on a decision set can be used for a class of prob-

lems such as T-v diagrams described in this study. The results show that student understanding 

significantly increased for all students regardless of their initial understanding. Given these promis-

ing results, the authors are in the process of creating/testing/making available multiple decision 

sets and problems using the ITS. Another advantage of the ITS is that it provides a means to collect 

detailed information about students, the effectiveness of the domain model, the success or failure 

of tutor feedback, retention and accreditation information, and as a means to share/test decision 

sets without requiring instructors to change the way they teach. 

All groups of students benefited from the activity, regardless of their background, instructor, or 

the type of help they received. Students learned roughly  1/2  of the component relations they didn’t 

know from a single activity, regardless of their initial understanding. Students improved in a similar 

manner regardless of their preference for watching instructor videos, guessing until they get the 

right answer, or thinking through their own understanding. 

The success of this approach suggests that future research should focus on the following 

1. Having additional instructors create, share, and test general to specific decision sets so the 

truly universal decision sets can be shared through multiple courses.
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2. Finding the simplest sets of general decisions that novices can use to solve problems, without 

the instructor directly providing answers. 

3. Using an ITS to integrate multiple decision sets into multiple domain models throughout an 

entire course.

4. Providing/testing/sharing an appropriate set of problems that challenges students, eliminates 

misconceptions, and builds understanding through pre-existing understanding.

5. Providing/testing/sharing help with specific decisions through group work, in-class activities, 

and online tools.
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APPENDIX A PRE- POST-TEST QUESTIONS

I don’t 
know Increases Decreases Stays 

the same
No way 
to know

What happens to the pressure in a compressor?

¡ ¡ ¡ ¡ ¡

What happens to pressure when two fluid streams mix together 
into a single stream with an open system?

¡ ¡ ¡ ¡ ¡

What happens to pressure in a heat-exchanger when heat is 
removed?

¡ ¡ ¡ ¡ ¡

What happens to pressure in an expansion valve? 

¡ ¡ ¡ ¡ ¡

What happens to pressure when liquid and gas are separated?

¡ ¡ ¡ ¡ ¡
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I don’t 
know Increases Decreases Stays 

the same
No way 
to know

What happens to pressure in a heat exchanger when heat is added?

¡ ¡ ¡ ¡ ¡

Please answer the following questions about specific values of Temperature and Volume in a 

compressor.

I don’t 
know Increases Decreases

Stays 
the same

No way 
to know

What happens to temperature in a compressor? ¡ ¡ ¡ ¡ ¡

What happens to specific volume in a compressor? ¡ ¡ ¡ ¡ ¡

What happens to specific values of Temperature and Volume when two fluid streams mix together 

into a single stream with an open system?

I don’t 
know Increases Decreases

Stays 
the same

No way 
to know

Temperature ¡ ¡ ¡ ¡ ¡

Specific volume ¡ ¡ ¡ ¡ ¡
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What happens to specific values of Temperature and Volume in a heat-exchanger when heat is 

removed?

I don’t 
know Increases Decreases

Stays the 
same or 

increases

Stays the 
same or 

decreases
Stays 

the same
No way 
to know

Temperature ¡ ¡ ¡ ¡ ¡ ¡ ¡

Specific volume ¡ ¡ ¡ ¡ ¡ ¡ ¡

Please answer the following questions about specific values of Pressure, Volume and Temperature 

in an expansion valve.

I don’t 
know Higher Same Lower

No way 
to know

What happens to temperature in an expansion valve? ¡ ¡ ¡ ¡ ¡

What happens to specific volume in an expansion valve ¡ ¡ ¡ ¡ ¡

How does the temperature coming INTO a gas-liquid separator compare to the two exiting ones?

I don’t 
know

More than 
that of the 
two exiting 

fluids

Between 
that of the 
two exiting 

fluids

Less than 
that of the 
two exiting 

fluids
No way  
to know

Specific Volume ¡ ¡ ¡ ¡ ¡
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What happens to specific values of Temperature and Volume in a heat exchanger when heat is 

added?

I don’t 
know Increases Decreases

Stays 
the same

Stays the 
same or 

increases

Stays the 
same or 

decreases
No way 
to know

Temperature ¡ ¡ ¡ ¡ ¡ ¡ ¡

Specific volume ¡ ¡ ¡ ¡ ¡ ¡ ¡




