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TAMU – CVEN 363 Selected Examples Barroso/Morgan


 


1 Particle Kinematics 


1.1 Weight dropped down a well: Rectilinear motion 


1.2 Rotating crane: Polar coordinates 


1.3 Car traveling along a path: Path coordinates 


1.4 Kite problem: Velocity and Acceleration vectors in multiple coordinate systems 


1.5 Slider Pin in Rotating Slider Arm†: Polar Kinematics with coordinate 


transformation into Cartesian and path. 
 


 


2 Particle Kinetics 


2.1 Skier: determine acceleration and corresponding ground forces on the skier 


2.2 Boxes connected via pulley system on slopes†: Determine tension in cable and 
motion after specified time. 


2.3 Sliding box with dip in the road: Conservation of energy and Work‐Energy 
principles  


2.4 Getting a box up a slope: Impulse‐momentum 


2.5 Masses swing and hit: Conservation of energy and momentum principles to 
determine how far box will travel along a surface that becomes rough. 


2.6 Drop‐hammer: Guided masses with plastic impact and supporting spring 


2.7 Masses suspended on pulley system with spring†: Determine the EoM utilizing 
various equilibrium and energy approaches 


2.8 Masses between pulley systems and inclined spring: Determine the nonlinear 
EoM  


2.9 Dropping weight on a flexible platform: Determine EoM and corresponding 
initial conditions so as to find response of SDOF system  
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2.10 Response of vehicle traveling over harmonic path†: Determine the steady‐state 
response and select damping to meet response criteria 


2.11 Response of seismic response instrument†: Determine the EoM, system 
response and parameters 


2.12 System with motor: Determine the EoM and response of SDOF system with a 
rotating unbalanced mass 


2.13 Linked Pendulums: Determine linearized EoMs utilizing equilibrium and 
energy principles 


2.14 Double Pendulum: Determine the nonlinear and linearize EoMs utilizing 
equilibrium and energy principles 


2.15 Multi‐degree of Freedom System with Motor and Support Motion: Determine 
the EoMs  


 


 


3 Rigid Body Kinematics 


3.1 Load Lifted by Pulley System†: Determine acceleration at various points using 


vector equations 


3.2 Four Bar Linkage†: Determine response at specific time using vector equations 


3.3 Linkage with Sliding Collar†: Determine generalized equations using geometric 
approach 


 


 


4 Rigid Body Kinetics 


4.1 Sliding Wardrobe: Determine normal force on rollers 


4.2 Truck Bed: Force on truck bed exerted by hydraulic jack 


4.3 Disk Pulled by Rope on Rough Surface: Check if disk rolls or slips 
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4.4 Rolling down the hill without slip: Comparison of solid disk vs. thin shell; 
checking no‐slip assumption 


4.5 Movable Rigid Body Pulley: Determine acceleration and movement of load 
supported by a movable pulley system 


4.6 Sliding Block and Rotating Cylinder†: Determine EoM of MDOF System 
assuming cylinder rolls without slip 


4.7 Compound Pendulum: Determine EoM of MDOF System 
 


† Problem used with permission courtesy of Dr. Dara Childs from Dynamics in Engineering Practice, 10th 


Edition, CRC Press. 
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Problem 5: The compound pendulum system shown below is composed of a rectangular rigid 
bar of mass m and length L and a disk at its end of mass M and radius R. The disk is attached to 
the bar at its center so as to allow the disk to spin relative to the bar (translations at the 
connection are restrained). Derive the equations of motion for this system for small motions and 
place them in matrix form. 


 
 
 
 
 
 
 
 


 


k


m,L



M,R
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Problem 1: The linkage ABDE moves in the vertical plane. Knowing that in the position shown 
crank AB has a constant angular velocity 1 of 20 rad/sec counterclockwise, determine the 
angular velocities and accelerations of the connecting rod BD and of the crank DE. Use vector 
equations to solve. 
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Problem 2: The system shown is a configuration for a seismic motion measurement system. The 
system is mounted on a structure that has a vertical harmonic vibration of 15 Hz and double 
amplitude, 2A, of 2 mm.  The sensing element has a mass m = 2.0 kg, and the spring has a 
stiffness k = 1.75 kN/m .  The motion of the mass relative to the instrument base is recorded on a 
revolving drum and shows double amplitude, 2YOP, of 2.2 mm during the steady-state condition.  


 
Task:  


(a) Derive the EoM for the system.  Use for your degree of freedom the deformation 
variable whose response corresponds to the motion plotted by the rotating drum. 


 
(b) Calculate the viscous damping constant c 


 
 


 
. 


 
 
 
 
 
 
 
 
 
 
 
 
 
Hint: you must decide if the response plotted by the rotating drum corresponds to total/absolute motion of 
the system or the relative motion of the system? 


m 


k 


c 


structure


2YOP


2A 
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Problem 2: (Based on Old Exam Problem) For the system shown below, all surfaces are frictionless 
and the cables inextensible.  A motor located on top of M1 can be represented by a small mass of 
magnitude m eccentrically placed at a distance e. Given system properties of: 


W1 = 25 lbs, W2 = 10 lbs, w = 2 lbs, k1 = 2 lb/in, k2 = 4 lb/in, e = 0.001 in 
 


a) Draw the free-body diagram for all masses in the system. Indicate on the drawing what direction 
you are assuming as positive motion, and clearly state whether measuring motion from 
equilibrium or undeformed spring position.  


 
b) Formulate the equation of motion for the system based on the horizontal motion of M1. Leave 


equation in symbolic form. 
 


c) What is the undamped natural frequency? What is the damping ratio? Leave expressions in 
symbolic form. 


 
d) What should the damping coefficient, c, for a single damper be so that the amplitude of dynamic 


motion of M1 in steady-state is 5 inches in the worst case excitation? Hint: what ratio of forcing 
frequency to natural frequency creates the worst-case scenario? 


 


k1


c M1


M2


k2


c


m


 
 















































































































lbarroso

Text Box

Problem 1: (25 pts) A weight is dropped down a mine shaft and is heard striking the bottom T seconds later. 
     a)  If the speed of sound is c, find the depth h of the shaft as a function of c, T, and the gravitational
          constant g. Hint: break up the problem into two events: (1) weight dropping, and (2) sound traveling.
    
     b)  If c = 1126 ft/sec and T = 10 sec, what is the numerical value of the depth h?
     c)  If the finite velocity of sound were ignored (in other words, you assumed that you heard the strike at
          the exact same time actually hit the bottom), would the depth be overestimated or underestimated?
          By how much?
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Problem 1:  A kite is let out by a pulley system on the ground. The equation of the kite's path can at any 
time be described by: y = (x2)/25 ft. The vertical position is defined as y = 15t. At t = 1.5 seconds, find: 


a) The position vector for the kite in Cartesian and Polar coordinates. Take the origin at the pulley 
b) The straight distance between the kite and the pulley 
c) The velocity vector of the kite. Express that vector in Cartesian, Polar, and Path coordinates 
d) The acceleration vector of the kite. Express that vector in Cartesian, Polar, and Path coordinates 


Y


X


 
 


 
Given: 


 
2


25


x
y   ft → Path equation. Information most closely related to Path coordinates 


 15y t  ft → Y as a function of time. Most closely related to Cartesian coordinates 
 
 


Part (a) 
 


Required: The position vector {r} for the kite in Cartesian and Polar coordinates.  
 


Solution: 
Need to determine in what coordinate system the problem should be solve in first. Part of given 
information is in Path coordinates and part is in Cartesian coordinates. 
 
To solve in Path:  need to find speed and acceleration tangent to path before proceeding. Arguably the 
harder coordinate system than Cartesian. 
 
To solve in Cartesian: need to find x as a function of time. If we have both x and y as functions of 
time, then easy to solve in Cartesian. To express x as function of time: 
 


 


2


2


2


25


(15 )
25


25 15 375


375


x
y


x
t


x t t


x t








 





 


 
Choice: solve problem in Cartesian coordinates first!  Draw coordinate system on the figure to 
indicate location of origin and positive directions for x and y. 
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Position in Cartesian: By definition:  


       


     375 15 ft


r x t i y t j


t i t j


 


 
 


At t = 1.5 seconds: 
 


       
     


375*1.5 15*1.5 ft


23.72 22.5 ft


r i j


r i j


 


 
 


 
Note that the answer ONLY makes sense with the coordinate system shown above!! 
 


Answer:       23.72 22.5 ftr i j   Showing the vector graphically: 


 


0


5
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15
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25


30
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X (ft)


Y
 (


ft
)


 
 


X 


Y 


{r} 


{ry} = 22.5 {j} ft 


{rx} = 23.72 {j} ft 
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Position in Polar: We want to express the SAME position vector {r} but in a different coordinate 
system. So locate Polar coordinates: 


 Positive Radial direction goes from origin outward towards the point 
 Positive Theta direction is 90° counter-clockwise from Radial 
 


So first we need to determine those coordinate directions. Radial will be exactly in the same line as 
the position vector {r} we already found. I’ll draw the unit vectors at the point (as that is easier to 
visualize), but the origin of the Polar Coordinates is still at the pulley. 


To determine the angle between the positive x-direction and the positive radial direction, we can look 
at the right triangle formed by the components of {r}: 
 


 1


22.5
tan


23.72


tan 0.9486


43.49


y


x


r


r












 





 


 


 
In Polar coordinates, the entire position vector lies along the Radial direction (that is how the 
coordinate system is defined). Now that we have located that direction with the unit vectors in the 
figure above, we can write the Position Vector as: 
 


       
   


2 2
23.72 22.5 ft


32.69 ft


R


R


r e


r e


 



 


 
Key point: in both coordinate system cases we are representing the exact same vector {r} 
 







TAMU – CVEN 363 Particle Kinematics Barroso
 


Part (b) 
Required: The straight distance between the kite and the pulley.  


 
Solution: The distance is the length of the position vector. Can be found from the expression in 
Cartesian or in Polar. 
 
Option 1: From {r} written in Cartesian 
 


   


     
 


2 2


distance = magnitude of r


23.72 22.5 ft


32.69 ft


r


r


r





 





 


 


Option 2: From {r} written in Polar 


   


   
 


2


distance = magnitude of r


32.69 ft


32.69 ft


r


r


r











 


 
Key point: in both coordinate system cases we are representing the exact same vector {r}, so their 
magnitudes/lengths MUST match. Should be used as a check to make sure your answers are correct 
when expressing any vector in multiple coordinates. 
 


Part (c) 
 


Required: The velocity vector of the kite. Express that vector in Cartesian, Polar, and Path 
coordinates.  


 
Solution:  Choose a coordinate system to start. As with position, Cartesian will be easiest since have 
x and y as functions of time. 
 
We know position vector is: 


             375 15 ftr x t i y t j t i t j     


 
Velocity vector in Cartesian: By definition: 


       v x t i y t j    


 
Need to take derivatives of x and y as functions of time. 


    
   


1
2


1
2


375 375


1
375 375


2
187.5 ft


s375


dx d d
x t t


dt dt dt


x t


x
t





  















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 15


ft15 s


dy d
y t


dt dt


y


 









 


 
Substituting these expressions into the Velocity vector in Cartesian is: 


 


     187.5 ft15 s375
v i j


t
   


 
At t = 1.5 seconds: 


     


     


187.5 ft15 s375*1.5


ft7.906 15 s


v i j


v i j


 


 
 


 
Graphically: 


 
Though not asked, lets determine the speed (magnitude of {v}) as that will be the same in all 
3 coordinate systems. This will let us know if we make a mistake along the way. 


         


 


22 2 2 ftspeed 7.906 15 s
ft16.96 s


x yv v v


v


    



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Velocity vector in Polar:  We want to express the SAME velocity vector {v} but in a different 
coordinate system. So need locate Polar coordinates – which we have done in Part (a).  Looking at the 
velocity vector together with the unit vectors for Polar: 
 


 
 
In order to express the vector {v} in Polar, we need to find the component directions of {v} along 
{eR} and {e}.  We can do this 2 ways: 
 


1. Tackling the full vector {v}: 
 


{v} {eR}
{e}


X
  


{v}
{vR} Determine angle between {v} and x-dir: 


 1


15
tan


7.906


tan 1.897


62.2


y


x


v


v












 





 


 


 
To find components, use the difference between the angles  and : 


      cosR Rv v e    Note: these equation depends on the geometry of the problem.  


      sinv v e     Draw the figure!! 
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Substituting values: 
 


      


      


   


ft16.96 cos 62.2 43.49 s
ft16.96 cos 18.71 s


ft16.1 s


R R


R R


R R


v e


v e


v e


 








 


  


 


      


      


   


ft16.96 sin 62.2 43.49 s
ft16.96 sin 18.71 s


ft5.44 s


v e


v e


v e


 


 


 


 








 


  


 
So full vector in Polar: 


     
      ft16.1 5.44 s


R


R


v v v


v e e








 


 
 


 
2. Tackling individual vector components {vx} and {vy} and adding their contributions: 


 
Two different ways to draw: (a) oriented with x and y as in original picture, or (b) 
oriented so your NEW axes lie in horizontal and vertical directions. 
 


{eR}{e}


X
  


{vy} = 15 {j} ft/s


{vx} = 7.906 {i} ft/s


   


{eR}


{e}


X


  


{vy} = 15 {j} ft/s


{vx} = 7.906 {i} ft/s






 
           Option (a)     Option (b) 
 


Since the x and y directions (and therefore components) are perpendicular to one another, 
we can determine the angles: 
 


 
90


43.49


90 43.49 46.51


 


 





 


 


  








  
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Both {vx} and {vy} vectors  will contribute (have components) along the R and  
directions. So: 


           cos cosR x y Rv v v e      


           sin sinx yv v v e       


 
Note: these equation depends on the geometry of the problem. Draw the figure!! 


 
Substituting values: 


       


    


   


ft7.906 cos 43.49 15 cos 46.51 s
ft5.736 10.32 s


ft16.1 s


R R


R R


R R


v e


v e


v e


 


 





 


 


       


    


   


ft7.906 sin 43.49 15 sin 46.51 s
ft5.441 10.88 s


ft5.44 s


v e


v e


v e


 


 


 


  


  





 


 
So full vector in Polar: 


     
      ft16.1 5.44 s


R


R


v v v


v e e








 


 
 


 
Matches exactly the answer with other approach! So 


      ft16.1 5.44 sRv e e   


 
Again, answer is only complete because we have clearly defined and drawn the unit vector 
directions for Polar coordinates previously. 
 
Check – compute the speed: 


         


 


2 2 2 2 ftspeed 16.1 5.44 s
ft16.96 s


Rv v v


v


     



 


 
Matches our previous answer. 
 
 
Graphically, we can see the components: 
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Velocity vector in Path:  We want to express the SAME velocity vector {v} but in a different 
coordinate system. So need locate Path coordinates – which we have NOT done in Part (a).   


 







TAMU – CVEN 363 Particle Kinematics Barroso
 


Two ways to locate Tangential direction in Path: 
1. Determining the slope/tangent to the curve. Requires that we have a path equation (y as a 


function of x) 
2. Utilizing the fact that the velocity vector lies exactly in the tangential direction 


 
We are given the path equation. However, we also DO know the velocity vector. So for this problem, 
either approach will work to determine PATH coordinates. 
 
Looking at the velocity vector together with the unit vectors for Path: 


 
1. Determining the slope to the curve:   Our Path equation is: 


2


25


x
y   ft 


To find slope, take derivative with respect to x: 


2


25


2


25 12.5


d d x
y


dx dx


x x
y


 
  


 


  


 


Note: derivative with respect to x is NOT the same as with 
respect to time. So  


dy dy


dx dt
y y





  
 


Evaluating the slope at the point when t = 1.5 seconds, we use the value of x at that time. 
 


375 375*1.5


23.72 ft


x t


x


 



 


 
Substituting into slope equation: 
 


23.72 ft1.897 ft12.5
y    


 
Using that information to find  (angle between positive x and tangent direction): 


tan


tan 1.897


62.2


dy
y


dx









   
 





 


 


 
 
2. Velocity vector lies exactly in the tangential direction:    
Determine angle between {v} and x-dir: 


 1


15
tan


7.906


tan 1.897


62.2


y


x


v


v












 





 
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Both approaches give us the same information. For some problems, you may only have 
one possible approach for which you have enough information. 
 
We now can express the velocity vector in Path. Again, two approaches: 
 
1. Velocity vector lies exactly in the tangential direction:   So we have a vector of length equal 


to the speed and exactly along T direction: 
 


{v}
{eT}


{eN}   
X


  ftspeed 16.96 sv   


 


    ft16.96 sTv e  


 
2. Tackling individual vector components {vx} and {vy} and adding their contributions:  
 
Two different ways to draw: (a) oriented with x and y as in original picture, or (b) 
oriented so your NEW axes lie in horizontal and vertical directions. 
 


{vy} = 15 {j} ft/s


{vx} = 7.906 {i} ft/s


{eT}
{eN}


X
  


90°


              


{vy} = 15 {j} ft/s


{vx} = 7.906 {i} ft/s


{eT}


{eN}


X


  






 
           Option (a)     Option (b) 
 


Since the x and y directions (and therefore components) are perpendicular to one another, 
we can determine the angles: 


90 & 62.2


90 62.2


27.8


  








  


 





 


 





 


 
Both {vx} and {vy} vectors  will contribute (have components) along the T and  
directions. So: 


           cos cosT x y Tv v v e      


           sin sinx y Nv v v e       


Note: these equation depends on the geometry of the problem. Draw the figure!! 
Substituting values: 
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       


    


   


ft7.906 cos 62.2 15 cos 27.8 s
ft3.687 13.67 s


ft16.96 s


T T


T T


T T


v e


v e


v e


 


 





   


 


       


    


   


ft7.906 sin 62.2 15 sin 27.8 s
ft6.99 6.99 s


ft0 s


N N


N N


N N


v e


v e


v e


  


  





 


 
Combining: 
 


         


   


ft ft16.96 0s s
ft16.96 s


T N T N


T


v v v e e


v e


   



 


 
Both approaches give us the same answer in Path coordinates. So the velocity vector is: 


    ft16.96 sTv e  


 







TAMU – CVEN 363 Particle Kinematics Barroso
 


Part (d) 
Required: The acceleration vector of the kite. Express that vector in Cartesian, Polar, and Path 
coordinates 


 
Solution: Choose a coordinate system to start. As with position, Cartesian will be easiest since have x 
and y as functions of time. 
 
We know velocity vector is: 


     187.5 ft15 s375
v i j


t
   


 
Acceleration vector in Cartesian: By definition: 


       a x t i y t j    


 
Need to take derivatives of x and y as functions of time. 


 


  
   


  


 


2


1
2


2


3
2


2


3
2


3
2


187.5 ft
s375


ft187.5 375
s


1 ft187.5 375 375
s2


35156.2 375


35156.2


375


d d
x x


dt dt t


d
x t


dt


x t


x t


x
t











    
 





   
 


 






 














 
    2


2


ft15
s


ft0
s


d d
y y


dt dt


y


 





 



 


 
Evaluating at t = 1.5sec 
 


   
3 3


2 2


2


35156.2 35156.2


375*1.5 562.5


35156.2


13340.86
ft2.635


s


x


x


x


 
 






 











 2
ft0


s
y   


 
Substituting values, the acceleration vector at t = 1.5 s is then: 


      2
ft2.635 0


s
a i j    


 
Graphically: 
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Though not asked, lets determine magnitude of {a} as that will be the same in all 3 
coordinate systems. This will let us know if we make a mistake along the way. 


         


 


22 2 2
2


2


ft2.365 0
s


ft2.365
s


x ya a a


a


    



 


 
Acceleration vector in Polar:  We want to express the SAME acceleration vector {a} but in a different 
coordinate system. So need locate Polar coordinates – which we have done in Part (a). 
 
In order to express the vector {a} in Polar, we need to find the component directions of {a} along 
{eR} and {e}.  We can do this the same 2 ways as for velocity – but since the full acceleration vector 
lies along the x-direction, they are identical approaches.  
 
So looking at the figure with the acceleration vector and unit vectors for Polar, we can determine the 
geometry needed. 
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{eR}{e}


{a} = -2.365 {i} ft/s2


  


90°


X



 


{eR}


{e}


{a} = -2.365 {i} ft/s2   


90°


X





{aR}


{a}


 
 
 
So solving for the components in Polar: 
 


       


   


 


2


2


cos


ft2.365 cos 43.49
s


ft1.716
s


R R


R


R


a a e


e


e


 


  


 
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       


   


 


2


2


sin


ft2.365 sin 43.49
s


ft1.628
s


a a e


e


e


 











 





 


 
Combining components to express acceleration vector in Polar: 
 


     


      2
ft1.716 1.628


s


R


R


a a a


a e e








 


  
 


 


 
 
Check magnitude of acceleration: 


     


     


 


2 2


2 2
2


2


ft1.716 1.628
s


ft2.365
s


Ra a a


a


a


 


  





  Checks! Matches magnitude found earlier. 
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Acceleration vector in Path:  We want to express the SAME acceleration vector {a} but in a different 
coordinate system. So need locate Path coordinates – which we have done in Part (c).   


 
{eT}


{eN}


  
{a} 


90°
X  {eT}


{eN}


X


  


{a} = -2.365 {i} ft/s2


Determining components: 


        2
ftcos


sT Ta a e   


        2
ftsin


sN Na a e  


 
Substituting values: 


     


 


2


2


ft2.365 cos 62.2
s


ft1.103
s


T T


T


a e


e


  


 





  
     


 


2


2


ft2.365 sin 62.2
s


ft2.092
s


N N


N


a e


e


 






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Note that the tangential component of acceleration is positive. This ALWAYS must be true given our 
definition of Path Coordinates. Combining the components: 
 


     


      2
ft1.103 2.092


s


T N


T N


a a a


a e e


 


  
 


 
Check magnitude: 


       
     


     


 


2 2


2 2


2 2
2


2


ft1.103 2.092
s


ft2.365
s


T N


T N


a a a


a a a


a


a


 


 


  





   Checks! Matches magnitude found earlier 


 
Graphically: 
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Problem 1:   The position of the slider pin P in the rotating slotted arm OA is controlled by a power 


screw as shown. At the instant represented, θ = 30º   = 8 rad/s,   = -20 rad/s2,  r = 200 mm, r  = -300 
mm/s, and  r  = 0.   
 
 
 
 
 
 
 
 
 
 
 
Tasks:  
 


(a) For this instant and determine the velocity and acceleration vectors of P in the Polar Coordinate 
System.  You must express your answer in vector format using unit vectors appropriate for Polar 
coordinates. 


 
(b) Find the velocity vector components to Cartesian and Path Coordinates 


 
You MUST draw the unit vectors for all three coordinate systems. Clearly indicate on the drawing the 
angle you will be using to transform from one coordinate system to another.  
 


Solution: 
(a) 


Polar Information: 


o


2 2


200 mm           30


300 mm/s       8 rad/s


r   0 mm/s             -20 rad/s


r


r











 


  


 






 


 
 
For r- θ  components: 


300 300
mm/s


200 *8 1600
r rv vr


v vr 
         


            
        



    


 
Velocity in vector form:        300 1600  mm/srv e e    


 
22


2128000 200 *8
mm/s


8800200* ( 20) 2 * ( 300) *82
r ra ar r


a ar r 



 


                                   



   


 
Acceleration in vector form:         212800 8800  mm/sra e e    


 
 


X 


A 


P 


θ 


 


O 


 


Y 


εr   


εn   


εθ    


εt   


v   


a   


θ  
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(b) Magnitude of Velocity Components in Cartesian and Path: 
 
Transformation from Polar to Cartesian:  clockwise through angle . 


cos30 sin30 300 1060
mm/s


sin30 cos30 1600 1236
X X


Y Y


v v


v v


          
          
        


 


 
Transformation from Cartesian to Path:  Counter-clockwise rotation through angle β (which is greater 
than 90° in this case) 
 
Need to find direction of velocity relative to positive X-axis, i.e. need to find β.  My approach: find angle 
between positive tangential direction and negative x-asis,   


1


1


tan


1236
tan


1060


49.38  


y


x


o


v


v
 





 
    


 
   
 





 


 
To get β, need to subtract from 180 degrees: 


180


130.6o


 





 


  


 
Transforming: 


cos130.6 sin130.6 1060 1628.3
mm/s


sin130.6 cos130.6 1236 0
t t


n n


v v


v v


        
                    


 





